Technology of Concreting of Internal Containment Shell of the Reactor Building of the Belarusian Nuclear Power Plant

Number of journal: №5-2016
Autors:

D.N. KOROTKIKh
A.E. KOKOSADZE
Yu.I. KULINICh
D.A. PANIKIN

DOI: https://doi.org/10.31659/0585-430X-2016-737-5-10-15
УДК: 693.5:621.039.538

 

AbstractAbout AuthorsReferences
A new technology of concreting of the internal containment shell (ICS) and external containment shell (ECS) of the reactor building of NPP developed by the “Orgenergostroy” Institute under the task of the General Contractor, NIAEP – ASE United Company, is presented. It is shown that the use of this technology significantly reduces the construction time of main building structures of containment shells and also considerably improves the quality of reinforced concrete structures of ICS and ECS. Data on the form-factor of the reactor building, requirements for concrete, developed compositions of self-compacting concrete mixes, technological solutions of concreting of ICS of the reactor building of the Belorussian Nuclear Power Plant are presented.
D.N. KOROTKIKh1 , Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.);
A.E. KOKOSADZE2 , Engineer,
Yu.I. KULINICh2 , Engineer,
D.A. PANIKIN2 , Engineer

1 Voronezh State University of Architecture and civil Engineering (84, 20-letija Oktjabrja Street, 394006, Voronezh, Russian Federation)
2 AO «Institut «Orgenergostroi» (7, str. 10, Derbenevskaya Embankment, 115114, Moscow, Russian Federation)

1. Gordienko V.A., Brykin S.N., Kuzin R.E., Starkov M.V., Serebryakov I.S., Tairov T.N. Nuclear power pros and cons: A comparative analysis of radioactive emissions from nuclear power plants and thermal power plants. Moscow University Physics Bulletin. 2012. Vol. 67. No. 1, pp. 120–127.
2. Tikhonov M.N., Tsygan V.N. The catastrophic consequences of the Chernobyl accident. Ekologicheskaya ekspertiza. 2011. No. 5, pp. 22–32. (In Russian).
3. Teroganov N. Russian-Iranian nuclear cooperation: 1992-2006. Central Asia and the Caucasus. 2008. No. 2 (50), pp. 72–84.
4. Onufrienko S.V., Bezlepkin V.V., Molchanov A.V., Svetlov S.V., Solodovnikov A.S., Semashko S.E. Features of the concept of security of AES-2006 at the site of Leningrad NPP-2. Tyazheloe mashinostroenie. 2008. No. 2, pp. 6–10. (In Russian).
5. Shvyryaev Yu.V., Morozov V.B., Tokmachev G.V., Baikova E.V., Chulukhadze V.R., Fedulov M.V. Using probabilistic analysis in justifying security AES-2006, designed for the site of Novovoronezh NPP. Atomnaya energiya. 2009. Vol. 106. No. 3, pp. 123–129. (In Russian).
6. Schneider M., Froggatt А. The World Nuclear Industry Status Report 2015. Paris, London: MSC. 2015. 201 p.
7. Zatsepin E.N., Drobot S.V. Basic principles of the Belarusian nuclear power plant safety. Vestsі Natsyyanal’nai akademіі navuk Belarusі. Seryya fіzіka-tekhnіchnykh navuk. 2015. No. 1, pp. 118–122. (In Russian).
8. Bazhenov Yu.M., Chernyshov E.M., Korotkikh D.N. Design of modern concrete structures: defining principles and technology platforms. Stroitel’nye Materialy [Construction Materials]. 2014. No. 3, pp. 6–14. (In Russian).
9. Kardumyan G.S., Nesvetaev G.V. About designing the composition of high-strength self-compacting concrete. Beton I Zhelezobeton. 2012. No. 6, pp. 8–11. (In Russian).
10. Kaprielov S.S., Sheinfel’d A.V., Kardumyan G.S. Unique concretes and experience in their implementation in modern construction. Promyshlennoe i grazhdanskoe stroitel’stvo. 2013. No. 1, pp. 42–44. (In Russian).
11. Kalashnikov V.I. The terminology of the science of the concrete of the new generation. Stroitel’nye Materialy [Construction Materials]. 2011. No. 3, pp. 103–106. (In Russian).

For citation: 


Print   Email