Silicate Anchor Fixer

Number of journal: №1-2-2016
Autors:

B.P. KHASEN
Zh.P. VAREKHA
S.N. LIS

DOI: https://doi.org/10.31659/0585-430X-2016-733-734-1-2-116-120
УДК: 666.96

 

AbstractAbout AuthorsReferences
Results of the development of a new anchor fixer which is used in the mining industry as bonding material for fixing rod stud in the hole when the mine support is executed. On the basis of the study of strength properties of the cement stone depending on the hardening time and temperature, microscopic and X-ray microanalysis the silicate anchor fixer effectively operating at low temperatures (up to 10о C) has been developed. The fixer composition includes an expansion agent facilitating the increase in the volume of mixture up to 5% that, under conditions of the closed space, compacts the structure of silicate stone and thereby increases its strength. Unlike organic anchor fixer the developed composition is non-toxic and non-flammable. Industrial testing of the silicate fixer started.
B.P. KHASEN, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Zh.P. VAREKHA,Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
S.N. LIS, Engineer,(This email address is being protected from spambots. You need JavaScript enabled to view it.)

TOO Institute of Problems of Complex Development of Mineral Resources (5, Ippodromnaya Street, 100019, Karaganda, Kazakhstan)

1. Bertuzzi R. 100-Year design life of rock bolts and shotcrete. The Australian Local Government Infrastructure. Yearbook. 2010, pp. 1–6.
2. Oreste P. Distinct analysis of fully grouted bolts around a circular tunnel considering the congruence of displacements between the bar and the rock. International Journal of Rock Mechanics & Mining Sciences. 2008. Vol. 45, pp. 384–396.
3. Mijia Yang, Yiming Zhao, Nong Zhang. Creep behavior of epoxy-bonded anchor system. International Journal of Rock Mechanics & Mining Sciences. 2014. Vol. 67, pp. 96–103.
4. Martirosov G.M., Lazarev A.D., Kudryashov A.G., Leipunskii B.F. Anchoring of smooth cores solution on the straining cement. Beton i zhelezobeton. 2001. No. 4, pp. 27–29. (In Russian).
5. Windsor C.R. Rock reinforcement systems. International Journal of Rock Mechanics and Mining Sciences. 1997. Vol. 34 (6), pp. 919–951.
6. Samir Maghous, Denise Bernaud, Eduardo Couto. Three-dimensional numerical simulation of rock deformation in bolt-supported tunnels: A homogenization approach. Tunneling and Underground Space Technology. 2012. Vol. 31, pp. 68–79.
7. Villascusa E., Varden R., Hassell R. Quantifying the performance of resin anchored rock bolts in the Australian underground hard rock mining industry. International Journal of Rock Mechanics and Mining Sciences. 2008. Vol. 45, pp. 94–102.
8. Khasen B.P., Lis S.N., Varekha Zh.P. Development and improvement anchor fix. Kompleksnoe ispol’zovanie mineral’nogo syr’ya. 2012. No. 2, pp. 13–23. (In Russian).
9. Laura Blanco Martín, Michel Tijani, Faouzi HadjHassen, Aurílien Noiret. Assessment of the bolt-grout interface behaviour of fully grouted rockbolts from laboratory experiments under axial loads. International Journal of Rock Mechanics and Mining Sciences. 2013. Vol. 63, pp. 50–61.
10. Varekha Zh.P., Lis S.N., Magzumov A.E. Development of quick-hardening mineral structure for fixing of anchor cores in the shot. Works of the Karaganda State Technical University. 2006. No. 2, pp. 17–18. (In Russian).
11. Patent EА № 014323. Zakrepitel’ ankernykh sterzhney, patronirovanniy, mineral’niy. [Fixer of anchor cores, patronirovanny, mineral.] Bekturganov N.S., Khasen B.P., Varekha Zh.P., Lis S.N. Declared. 09.02.2009. Published 29.10.2010. Bulletin. No. 5. (In Russian).
12. Avidon V.P. Koeffitsienty dlya mineralogicheskikh i petrokhimicheskikh pereschetov. [Coefficients for mineralogical and petrochemical recalculations] Moscow: Nedra. 1976. 160 p.
13. Boykova A.I. The microx-ray spectral analysis in cement chemistry. Stroitel’nye Materialy. 2007. No. 3. Application Nauka, pp. 5–9. (In Russian).
14. Dvorkin L.I., Dvorkin O.L. Stroitel’nye materialy iz otkhodov promyshlennosti. [Construction materials from waste of the industry]. Rostov-on-Don: Feniks. 2007. 368 p.
15. Estemesov Z.A., Sultanbekov T.K., Shayakhmetov G.Z. Features of the mechanism of curing of cement in the presence of DPP. New in chemistry and technology of silicate and construction materials. Collection of scientific works. Almaty: TsELSIM. 2001.Vol. 1, pp. 7–21. (In Russian).
16. Volzhenskiy A.V., Burov Yu.S., Kolokol’nikov V.S. Mineral’nye vyazhushchie veshchestva. [The mineral knitting substances] Moscow: Stroyizdat. 1979. 476 p.
17. Kozlova V.K., Vol’f A.V. The analysis of the reasons of late emergence of an ettringit in a cement stone. Polzunovskii vestnik. 2009. No. 3, pp. 176–181. (In Russian).
18. Torpishchev Sh.K., Shaigurmanov E.T., Tleulenova G.T. Technological features of filling knitting on the basis of cement fine mineral additives. Nauchnyi zhurnal. Pavlodarskii Gos. Universitet im. S. Toraigyrova: Nauka i tekhnika Kazakhstana. 2003. No. 4, pp. 127–130. (In Russian).

For citation: 


Print   Email