Heat Insulation Material Produced from Pine Bark and Its Extract

Number of journal: №11-2016
Autors:

N.V. KILYUSHEVA
V.E. DANILOV
A.M. AYZENSHTADT 

DOI: https://doi.org/10.31659/0585-430X-2016-743-11-48-50
УДК: 674.816.3

 

AbstractAbout AuthorsReferences
An analysis of literature data shows that the bark of conifers is the most suitable for wooden building materials as its composition has a significantly low content of easy hydrolysable substances (hemicellulose, non-cellulose polysaccharides). The article presents the data on the composition of the material with the use of pine bark and its water extract, principal technology for producing the composite without using mineral binders, and possibilities of its application. Experimental studies of the process of extraction of extractive substances from vegetal resources on the example of pine bark have been conducted; experimental samples of a composite material have been obtained; tests of obtained experimental samples for strength, heat conductivity, water absorption, and swelling have been carried out. The material is characterized by sufficient mechanical strength, a satisfactory value of heat conductivity factor, high ecological purity. The value of water-physical, heat insulation, and mechanical characteristics makes it possible to recommend it to use as non-structural heat insulation.
N.V. KILYUSHEVA, Engineer
V.E. DANILOV, Engineer
A.M. AYZENSHTADT, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Northern (Arctic) Federal University named after M.V. Lomonosov (17, Severnay Dvina Emb., 163002, Arkhangelsk, Russian Federation)

1. Tatsyun M.V. The modern state LPK of Russia and ways of its development. Moscow. OOO “RIA news”, 2006. 24 р. (In Russian).
2. Stepen R.A., Khramova L.N., Sobolev S.V. Problemy ispol’zovaniya otkhodov derevoobrabatyvayushchikh predpriyatii Angaro-Eniseiskogo regeon [Problems of use of wastes of woodworking enterprises of the AngaraYenisei]. Lesosibirsk, 2003. 87 р. (In Russian).
3. Timonin A.A. Ekologo-ekonomicheskie aspekty bezotkhodnykh tekhnologii pererabotki lesnykh resursov. Moscow. Novye tekhnologii, 2007. 48 p. (In Russian).
4. Lukash A.A., Dyachkov C.A. Building products of chopped wood. Stroitel’nye Materialy [Construction Materials]. 2009. No. 1, pp. 54–55. (In Russian).
5. Zhuravleva L.N. The main directions of use of wood waste. Actual problems of forestry complex: collection of scientific works. papers based on the results of the Intern. scientific-technical Conf. Vol. 18. Bryansk: BGITA, 2007, pp. 96–99. (In Russian).
6. Lukutsova N. Influence of micro- and nanodispersed additions on qualities of wood-and cement compositions. SITA journal Israel, 2012. No. 3. Vol. 14, pp. 70–75.
7. Ayzenshtadt A., Valery Lesovik V., Frolova M., Tutygin A., Danilov V. Nanostructured Wood Mineral Composite. Procedia Engineering, 2015. Vol. 117, pp. 45–51.
8. Lucash A.A., Lukutsova N.P. The prospect of the production of building materials from wood to rot sound. Stroitel’nye Materialy [Construction Materials]. 2016. No. 9, pp. 85–88. (In Russian).
9. Danilov V.E., Ayzenshtadt A.M., Frolova M.A., Turobova M.A., Karelsky A.M. Preparation of organic filler based on wood’s crust and basalt for the development of composite materials. Stroitel’nye Materialy [Construction Materials]. 2015. No. 7, pp. 72–75. (In Russian).
10. Dvorkin L.I. Stroitel’nye materialy iz otkhodov promyshlennosti [Building materials from waste industry]. Rostov: Feniks, 2007. 368 pp. (In Russian).
11. Tuturin S.V. Mekhanicheskaya prochnost’ drevesiny [The mechanical strength of wood]. Moscow. Sputnik Company+, 2007. (In Russian).
12. Lukash A.A., Plotnikov V.V., Botagovski M.V. Mesh wall panels of wood-based materials. Stroitel’nye Materialy [Construction Materials]. 2009. No. 2, рp. 72–73. (In Russian).
13. Levdansky V.A., Polezhaeva N.I., Levdansky A.V., Kuznetsov B.N. The isolation and study of the extractives of birch bark: Proceedings of the Russian scientificpractice. Conf. Forest and chemical complexes: problems and solutions. Krasnoyarsk. 2003. pp. 422–426. (In Russian).
14. Gierlinger N., Jacques N., Schwanninger M., Wimmer R., Hin-terstoisser B., Paques L.E. Canadian Journal of Forest Research. 2003. No. 33, рp. 1727–1736.

For citation: 


Print   Email