Gypsum-Lime-Slag Binders and Concretes on their Basis: an Experimental Assessment of Durability

Number of journal: №7-2016
Autors:

L.I. RYABOKON
S.V. BEDNYAGIN
I.K. DOMANSKAYA

DOI: https://doi.org/10.31659/0585-430X-2016-739-7-21-24
УДК: 691.332

 

AbstractAbout AuthorsReferences
The history of creation of a gypsum-lime-slag binder as well as the industrial experience in production and application of wall products and structures on its basis is described. The results of on-site investigations of 10 buildings constructed of gypsum-lime-slag concretes in Sverdlovsk Oblast from 1960 up to 1980 that confirms the high weathering stability and durability of the artificial stone on the basis of this type of gypsum binders are presented. The strength of gypsum-lime-slag concretes after the half-century operation in the form of wall structures exceeds two times the handling strength and is 11–13 MPa
L.I. RYABOKON, Candidate of Sciences (Engineering),
S.V. BEDNYAGIN, Engineer,
I.K. DOMANSKAYA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Ural Federal University named after the First President of Russia B.N. Eltsin (17, Mira Street, 620002, Ekaterinburg, Russian Federation)

1. Shtark I., Vikht B. Dolgovechnost’ betona [Durability of concrete]. Kiev: Oranta. 2004. 295 p.
2. Tang S.W., Yao Y., Andrade C., Li Z.J. Recent durability studies on concrete structure. Cement and Concrete Research. 2015. Vol. 78. Part A, pp. 143–154.
3. Glassera F.P., Marchanda Ja., Samsonc E. Durability of concrete – Degradation phenomena involving detrimental chemical reactions. Cement and Concrete Research. 2008. Vol. 38, pp. 226–246.
4. Yankovskiy L.V. Durability of Cement Concretes in the Light of Transition of European Standards. Stroitel’nye Materialy [Construction Materials]. 2012. No. 1, pp. 16– 18. (In Russian).
5. Hornbostela K., Larsena C.K., Geikera M.R. Relationship between concrete resistivity and corrosion rate – A literature review. Cement and Concrete Composites. 2013. Vol. 39, pp. 60–72.
6. Rapoport P.B., Rapoport N.V., Polyanskiy V.G., Sokolova E.R., Garibov R.B., Kochetkov A.V., Yankovskiy L.V. Analysis of service life of modern cement concrete. Sovremennye problemy nauki i obrazovaniya. 2012. No. 4. http://www.science-education.ru/ru/ article/view?id=6559 (date of access 11.07.2016). (In Russian).
7. Huntzingera D.N., Eatmonb T.D. A life-cycle assessment of Portland cement manufacturing: comparing the traditional process with alternative technologies. Journal of Cleaner Production. 2009. Vol. 17, pp. 668–675.
8. Juengera M.C.G., Winnefeldb F., Provisc J.L., Idekerd J.H. Advances in alternative cementitious binders. Cement and Concrete Research. 2011. Vol. 41, pp. 1232– 1243.
9. Zhang Z., Provis J., Reid A., Wang H. Geopolimer foam concrete: An emerging material for sustainable construction. Construction and Building Materials. 2014. Vol. 56, pp. 113–127. 10. Sun H., Jain R., Nguyen K., Zuckerman J. Sialite technology – sustainable alternative to portland cement. Clean Technologies and Environmental Policy. 2010. Vol. 12, pp. 503–516.
11. Riechert C., Scharfe F., Fischer H.-B. Zur Eignung von Gips-Zement-Puzzolan-Bindemitteln für Putzanwendungen. Ibausil: Tagungsband. Weimar. 2012, pp. 0432–0441.
12. Budnikov P.P. Gips, ego issledovanie u primenenie [Gypsum, its study and application]. Moscow-Leningrad: Stroyizdat narkomstroya. 1943. 378 p.
13. Antipin A.A. Plaster construction details for high-speed construction. Opyt stroyki. 1939. No. 4, p. 43. (InRussian).
14. Volzhenskiy A.V. Production of limy and plaster mixes and increase of their water proofness. Promyshlennost’ stroitel’nykh materialov. 1940. No. 10, pp. 10–11. (In Russian).
15. Alksnis F.F. Tverdenie i destruktsiya gipsotsementnykh kompozitsionnykh materialov [Curing and destruction plaster and cement composite materials]. Leningrad: Stroyizdat. 1988. 103 p.

For citation: 


Print   Email