Features of Hardening Mechanism of Nanostructured Binder

Number of journal: №1-2-2016
Autors:

V.V. STROKOVA
M.N. SIVALNEVA
I.V. ZHERNOVSKY
V.A. KOBSEV
V.V. NELUBOVA

DOI: https://doi.org/10.31659/0585-430X-2016-733-734-1-2-62-69
УДК: 666.972:539.2

 

AbstractAbout AuthorsReferences
Goal of this paper is more deep understanding of hardening mechanism of silica nanostructured binder. Study of kinetics of structure formation in silica nanostructured binder (NB) is realized. Analysis of chemical processes in the NB system taking place during the time period from 4 hours to 7 days is accomplished on the base of data of X-ray analysis and IR-spectroscopy. The strength development in NB system is studied. Improving of strength values of NB when reducing of amorphous component in the binding system is observed. Mechanism of structure formation in silica based NB, consisting in two stages: polycondensation with involving of water component when assembling of siloxane bands; autoepitaxial crystallization of amorphous component at surface of α-quartz crystals. For this mineral binding system the raw silica component is quartz of first stage of phase formation and a new formation is quartz of second stage of phase formation
V.V. STROKOVA, Doctor of Sciences (Engineering),
M.N. SIVALNEVA, Engineer,
I.V. ZHERNOVSKY, Doctor Sciences (Geology and Mineralogy),
V.A. KOBSEV, Engineer,
V.V. NELUBOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukov Street, Belgorod, 308012, Russian Federation)

1. Zhernovsky I.V., Osadchaya M.S., Cherevatova A.V., Strokova V.V. Aluminosilicate nanostructured binder on the base of granite. Stroitel’nye Materialy [Construction Materials]. 2014. No. 1–2, pp. 38–41. (In Russian).
2. Pavlenko N.V., Strokova V.V., Kapusta M.N., Netsvet D.D. About application prospectivity of rocks with different geological and morphological features as basic raw component for free-cement binder production. Applied Mechanics and Materials. 2014. Vol. 670, pp. 462–465.
3. Nelyubova V.V., Kobzev V.A., Kapusta M.N., Podgornyi I.I., Pal’shina Yu.V. Features of nanostructured binder depending of genesis of raw materials. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2015. No. 3, pp. 7–9. (In Russian).
4. Miroshnikov E.V., Strokova V.V., Cherevatova A.V., Pavlenko N.V. Nanostructured perlite binder and based foam concrete. Stroitel’nye Materialy [Construction Materials]. 2010. No. 9, pp. 105–106. (In Russian).
5. Cherevatova A.V., Pavlenko N.V. Foam concrete on the base of nanostructured binder. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2009. No. 3, pp. 115–119. (In Russian).
6. Nelyubova V.V., Zhernovsky I.V., Strokova V.V., Bezrodnykh M.V. Silicate autoclave materials with nanostructured modifier under high-temperature exposure. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9. С. 8–9. (In Russian).
7. Nelyubova V.V., Strokova V.V., Pavlenko N.V., Zhernovsky I.V. Construction composites with nanostructured binder on the base of genetically different raw materials. Stroitel’nye Materialy [Construction Materials]. 2013. No. 2, pp. 20–24. (In Russian).
8. Nelyubova V.V., Cherevatova A.V., Strokova V.V., Goncharova T.Yu. Features of structure formation of pigmented silicate materials with nanostructured binder. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2010. No. 3, pp. 25–28. (In Russian).
9. Pivinskiy Yu.E. Keramicheskie vyazhushchie i keramobetony [Ceramic binders and ceramic concrete]. Moscow: Metallurgiya. 1990. 270 p. (In Russian).
10. Cherevatova A.V., Strokova V.V., Zhernovsky I.V. Mineral’nye nanostrukturirovannye vyazhushchie. Priroda, tekhnologiya i perspektivy primeneniya: monografiya [Mineral nanostructured binders. Nature, technology and development prospects]. Belgorod: BGTU. 2010. 161 р. (In Russian).
11. Solovyov L.A. Full-profile refinement by derivative difference minimization. Journal of Applied Crystallography. 2004. Vol. 37, pp. 743–749.

For citation: 


Print   Email