Experimental Study of Heat Transfer Processes in a Bolt Dowel Joints

Number of journal: №12-2016
Autors:

S.V. FEDOSOV
V.G. KOTLOV
R.M. ALOYAN
M.V. BOCHKOV
R.A. MAKAROV

DOI: https://doi.org/10.31659/0585-430X-2016-744-12-83-85
УДК: К 694.14:536.255

 

AbstractAbout AuthorsReferences
Methods for the study of heat transfer processes in dowel joints of roof frameworks, which is based on the monitoring of the dynamic of thermal fields in timber with the help of a thermovisor, are outlined. Results of experimental research in heating and cooling processes of a dowel in the form of bolt junction are presented. The color array of temperature fields illustrates and confirms outlined earlier physical representations about features of the heat transfer mechanism in the system “metallic dowel – timber” when changing temperature-humidity parameters of the operation environment. The mathematical model in the form of an end problem of heat conductivity is presented; results of the calculation, which testify the adequacy of the mathematical model to the experimental data, are shown
S.V. FEDOSOV1 , Doctor of Sciences (Engineering), Academician of RAACS, President (This email address is being protected from spambots. You need JavaScript enabled to view it.);
V.G. KOTLOV2 , Candidate of Sciences (Engineering), Counsellor of RAACS (This email address is being protected from spambots. You need JavaScript enabled to view it.);
R.M. ALOYAN1 , Doctor of Sciences (Engineering), Corresponding Member of RAACS, Rector,
M.V. BOCHKOV1 , Engineer,
R.A. MAKAROV1 , Post-graduate student (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Ivanovo State Polytechnical University (20, Mart 8th Street, Ivanovo, 153037, Russian Federation)
2 Volga State University of Technology (3, Lenin Square, Yoshkar-Ola, Republic of Mari El, 424000, Russian Federation)

1. Халтурин Ю.В., Пантюшина Л.Н., Пантюшина Е.В. Конструкции из дерева и пластмасс: Монография. Барнаул: Изд-во АлтГТУ, 2010. 163 с. 1. Khalturin Yu.V., Pantyushina L.N., Pantyushina E.V. Konstruktsii iz dereva i plastmass: monografiya [Constructions of wood and plastics: a monograph]. Barnaul: AltGTU. 2010. 163 p.
2. Li Z., Marston N., Jones M. Corrosion of fasteners in treated timber field exposure testing. International Conference on Durability of Building Materials and Components. Porto. PORTUGAL. April 12–15, 2011.
3. Zelinka S.L., Rammer D.R. Modeling the effect of nail corrosion on the lateral strength of joints. Forest Products Journal. 2012. Vol. 62 (3), pp. 160–166.
4. Федосов С.В., Котлов В.Г., Алоян Р.М., Ясинский Ф.Н., Бочков М.В. Моделирование тепломассопереноса в системе газ – твердое при нагельном соединении элементов деревянных конструкций. Ч. 1. Общая физико-математическая постановка задачи // Строительные материалы. 2014. № 7. С. 86–91.
4. Fedosov S.V., Kotlov V.G., Aloyan R.M., Yasinskii F.N., Bochkov M.V. Simulation of heat-and-mass transfer in gas-solid system at nailed connection of timber structures elements. Part 1. General physical-mathematical statement of problem. Stroitel’nye Materialy [Construction Materials]. 2014. No. 7, pp. 86–91. (In Russian).
5. Федосов С.В., Котлов В.Г., Алоян Р.М., Ясинский Ф.Н., Бочков М.В. Моделирование тепломассопереноса в системе газ – твердое при нагельном соединении элементов деревянных конструкций. Ч. 2. Динамика полей температуры при произвольном законе изменения температуры воздушной среды // Строительные материалы. 2014. № 8. С. 73–79.
5. Fedosov S.V., Kotlov V.G., Aloyan R.M., Yasinskii F.N., Bochkov M.V. Simulation of heat-mass transfer in the gas-solid system at dowel joints of timber structures elements. Part 2. Dynamics of temperature fields at arbitrary law of changes of air environment temperature. Stroitel’nye Materialy [Construction Materials]. 2014. No. 8, pp. 73–79. (In Russian). 6. Федосов С.В. Тепломассоперенос в технологических процессах строительной индустрии. Иваново: ПресСто, 2010. 364 с.
6. Fedosov S.V. Teplomassoperenos v tekhnologicheskikh protsessakh stroitel’noi industrii [Heat and mass transfer in technological processes in construction industry]. Ivanovo: PresSto. 2010. 364 p.
7. Prahl D., Shaffer M. Moisture risk in unvented attics due to air leakage paths. DOE/GO-102013-3828. November, 2014. http://www.nrel.gov/docs/fy15osti/63048.pdf.
8. Roppel P., Lawton M. Attic ventilation and moisture research study. Homeowner Protection Office, Burnaby, BC, Canada. 2014. https://hpo.bc.ca/files/download/ Report/Attic-Research-Study-Final.pdf.

For citation: 


Print   Email