Evolution of the Theory of Concrete Strength. From Simple to Complex

Number of journal: №12-2016
Autors:

V.P. SELYAEV
P.V. SELYAEV
E.L. KECHUTKINA

DOI: https://doi.org/10.31659/0585-430X-2016-744-12-70-79
УДК: 691.3

 

AbstractAbout AuthorsReferences
A model of the structure of cement composites based on the principles of the fractal geometry according to which the complex systems of nature consist of parts (fractals), which at each scale level is like the whole, is proposed. It is shown that the classical theory of strength does not reflect the real picture of the resistance of fractal structures to destruction. It is experimentally and theoretically proved that the destruction of cement composites is a multi-level, multi-stage process; under the action of compressive loads, the concrete structure can be destroyed both by cleavage and by cutting; a fractal model more exactly describes the relation between compression and tension, scale effect, dependence of compression strength on the friction coefficient. Deformation diagrams obtained with the use of the software complex “Welle Geotechnik” confirm the discrete-continuous character of the destruction of cement composites under compression
V.P. SELYAEV, Doctor of Sciences (Engineering), Academician of RAACS,
P.V. SELYAEV, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
E.L. KECHUTKINA, Engineer National Research N.P.Ogarev

Mordovia State University (68, Bolshevistskaya Street, Saransk, 430005, Republic of Mordovia, Russian Federation)

1. Akhverdov I.N. Vysokoprochnyi beton [High-strength concrete]. Moscow: Gosstroyizdat. 1961. 162 p.
2. Berg O.Ya. To a question on concrete strength and ductility. Doklady Akademii Nauk SSSR. 1950. Vol. 70. No. 4, pp. 617–620. (In Russian).
3. Berg O.Ya., Shcherbakov E.N., Pisanko G.I. Vysokoprochnyi beton [High-strength concrete]. Moscow: Stroyizdat. 1971. 208 p.
4. Solomatov V.I. Polimertsementnye betony i plastbetony [Cement-polymer concrets and polymer concrets]. Moscow: Stroyizdat. 1967.182 p.
5. Kuntsevich O.V. Betony vysokoi morozostoikosti dlya sooruzhenii Krainego Severa [Concrete high frost resistance for the construction of the Far North]. Leningrad: Stroyizdat. 1983. 132 p.
6. Satalkin A.V., Solntseva V.A., Papova O.S. Tsementnopolimernye betony [Cement-polymer concretes]. Leningrad: Stroyizdat. 1971. 168 p.
7. Solomatov V.I., Selyaev V.P., Sokolova Yu.A. Khimicheskoe soprotivlenie materialov [Chemical resistance of materials]. Moscow: RAASN. 2001. 284 p.
8. Selyaev V.P., Nizina T.A., Balykov A.S., Nizin D.R., Balbalin A.V. Fractal analysis of the deformation curves of dispersion-reinforced fine concrete in compression. Vestnik PNIPU. Mekhanika. 2016. No.1, pp.129–146. (InRussian).
9. Murashev V.I., Sigalov E.E., Baikov V.N. Zhelezobetonnye konstruktsii [Reinforced concrete structures]. Moscow: Gosstroyizdat. 1962. 659 p.
10. Sheikin A.E., Chekhovskii Yu.V., Brusser M.I. Struktura i svoistva tsementnykh betonov [Structure and properties of cement concrete]. Moscow: Stroiizdat. 1979. 344 p.
11. Ryb’ev I.A. Stroitel’nye materialy na osnove vyazhushchikh veshchestv [Construction materials based on binders]. Moscow: Vysshaya shkola. 1978. 309 p.
12. Mandelbrot B.B. The fractal geometry of nature. New York: Freeman. 1983. 480 p.
13. Solomatov V.I., Vyrovoi V.N., Selyaev V.P. Polistrukturnaya teoriya kompozitsionnykh stroitel’nykh materialov [Polystructural theory of composite building materials.]. Tashkent: FAN. 1991. 345 p.
14. Selyaev V.P., Selyaev P.V. Evolution and challenges of technology, reliability and creating products based on cement composites. Proceedings of the Russian-Chinese Forum of engineering technologies. 8–16 October 2015. PRC. Hangzhou, pp. 185–195. (In Russian).
15. Skorabogatov S.M. Katastrofy i zhivuchest’ zhelezobetonnykh sooruzhenii (klassifikatsiya i elementy teorii) [Accidents and vitality of reinforced concrete structures (classification and elements of the theory)]. Ekaterinburg: Ur GUPS. 2009. 512 p.
16. Zaitsev Yu.M. Modelirovanie deformatsii i prochnosti betona metodami mekhaniki razrusheniya [Modelling of deformation and strength of concrete methods of fracture mechanics]. Moscow: Stroyizdat. 1982. 196 p.
17. Chernyshev E.M., D’yachenko E.I., Makeev A.I. Neodnorodnost’ struktury i soprotivlenie razrusheniyu konglomeratnykh stroitel’nykh kompozitov [The heterogeneity of the structure and fracture resistance conglomerate building composites]. Voronezh: Voronezh State Architecture and Civil Engineering. 2012. 98 p.
18. Selyaev V.P., Solomatov V.I., Oshkina L.M. Khimicheskoe soprotivlenie napolnennykh tsementnykh kompozitov [The chemical resistance of cement-filled composites]. Saransk: Publisher University of Mordovia. 2001. 152 p.
19. Kupriyashkina L.I. Napolnennye tsementnye kompozity [Filled cement composites].Saransk: Publisher University of Mordovia. 2007. 180 p.
20. Feder E. Fraktaly: per. s angl [Fractals: translation from English]. Moscow: Mir. 1991. 254 p.
21. Broek D. Osnovy mekhaniki razrusheniya. Per. s angl [Basics of fracture mechanics. Translation from English]. Moscow: Vysshaya shkola. 1980. 368 p.
22. Travush V.I., Selyaev V.P., Selyaev P.V., Kechutkina E.L. On the possible quantum nature of the deformation and fracture of composites. Promyshlennoe i grazhdanskoe stroitel’stvo. 2016. No. 9, pp. 94–101. (In Russian).
23. Novozhilov V.V. A necessary and sufficient criteria for brittle strength. Prikladnaya matematika i mekhanika. 1969. Vol. 33. Iss. 2, pp. 212–222. (In Russian).
24. Hoek E., Bieniawski Z.T. The results of studies of the initiation and propagation of fracture from a single Griffith crack in a biaxial compressive stress field are reported in this paper. Proceedings of the 1-st Congress of the International Society on Rock Mechanics. Lisbon. 1966. Vol. 1, pp. 243–249.
25. Brace W.F. Brittle fracture of rocks. International Conference on the State of Stress Earth. New York: Elsevier. 1964. pp. 110–178.
26. Murell S. The theory of the propagation of elliptical Griffith cracks under various conditions of plane strain or plane stress. Proceedings of the 5 the Rock Mechanics Symposium. New York. 1963, pp. 563–577.
27. Selyaev V.P., Selyaev P.V., Kechutkina E.L. Basics fractal mechanics of concrete deterioration. Fracture mechanics of materials and structures. Materials VIII Academic readings RAASN. – International scientific and technical conference. 2014. Kazan: KGASU, pp.289–298. (InRussian).
28. Selyaev V.P., Selyaev P.V., Sorokin E.V., Kolotushkin A.V., Kechutkina E.L. Influence of friction on the strength of concrete strength. Regional’naya arkhitektura i stroitel’stvo. 2012. No. 3, pp. 12–17. (In Russian).
29. Bondarenko V.M., Selyaev V.P., Selyaev P.V. Physical basis of concrete strength. Beton i zhelezobeton. 2014. No. 4, pp. 2–6. (In Russian).
30. Bolotin V.V. Statisticheskie metody v stroitel’noi mekhanike [Statistical methods in structural mechanics]. Moscow: Stroyizdat. 1965. 279 p.

For citation: 


Print   Email