Development of Rational Parameters of Components of Foam Concrete Composition

Number of journal: №8-2016
Autors:

E.G. VELICHKO
A.Sh. KASUMOV

DOI: https://doi.org/10.31659/0585-430X-2016-740-8-52-56
УДК: 691.327.333

 

AbstractAbout AuthorsReferences
A series of articles, devoted to Professor Gorchakov, development of his concept about the dependence of the structure, porosity and properties of building materials on the composition continues. The development of the foam concrete of higher quality with a grade of average density of D400 is theoretically substantiated. This is achieved through the use of a foaming agent with high-expansion foam and a high coefficient of application, multi-component modifiers of mineral and chemical nature in its composition. Special attention is paid to obtaining the rational parameters of components due to the three-level optimization of the disperse composition of the foam concrete. The authors analyze the complex application of micro-silica modifiers, super-plasticizer, hardener, fine-disperse slag, and modifier of MB group. It is shown that the three-level optimization is needed for ensuring the action of modifiers with synergy effect for improving the strength, reducing the shrinkage and heat conductivity of the foam concrete
E.G. VELICHKO, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.Sh. KASUMOV, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

National Research Moscow State University of Civil Engineering (26, Yaroslavskoe Highway, Moscow, 129337, Russian Federation)

1. On the 100th anniversary of Grigoriy I. Gorchakov study of durability, composition, structure and properties of cement systems. Stroitel’nye Materialy [Construction Materials]. 2016. No. 6, pp. 62–66. (In Russian).
2. Sakharov G.P., Gorchakov G.I. About the concept of creation of materials science of building materials with predetermined properties functionally. Proceedings of the Scientific Conference dedicated to the memory of G.I. Gorchakov and the 75th anniversary since the founding of the Department of Building Materials MSUCE. Moscow: MSUCE. 2009. pp. 217–226. (In Russian).
3. Velichko E.G., Belyakova Zh.S. Some aspects of the chemistry and mechanics of composites of multi-component cement systems. Stroitel’nye Materialy. [Construction Materials]. 1997. No. 2, pp. 21–25. (In Russian).
4. Adamson A. Fizicheskaya himiya poverhnostej [Physical chemistry of surfaces]. Moscow: Mir. 1979. 568 p.
5. Izraelashvili D. Mezhmolekulyarnye i poverhnostnye sily [Intermolecular and surface forces]. Moscow: Nauchnyj mir. 2011. 456 p.
6. Nguen T.T., Oreshkin D.V. Study of the structure of aerated concrete for housing in Viet Nam. Nauchnotehnicheskij Vestnik Povolzh’ya. 2014. No 3, pp. 169–172. (In Russian).
7. Nguen T.T., Oreshkin D.V. Selection and optimization of composition aerated concrete for Vietnamese conditions. Internet-vestnik VolgGASU. Ser. Politematicheskaya. 2014. Vol. 2. http://vestnik.vgasu.ru/attachments/5Ngue nTkhanTuanOreshkin-2014_2(33).pdf (date of access11/07/2016). (In Russian).
8. Nguen T.T., Oreshkin D.V. Technical properties autoclaved and nonautoclaved aerated concrete. Vestmik IrGTU. 2014. No. 8, pp. 100–103. (In Russian).
9. Ilich B.R., Mitrovich A.A., Milich L.R. Termal treatment of kaolin clay to obtain metakaolin. Hem. ind. 2010. No. 64 (4), рр. 351–356.
10. Shvarzman A., Kovler K., Grader G.S., Shter G.E. The effect of dihydroxylation amorphization degree on pozzolanic activity of kaolinite. Cement and Concrete Research. 2003. Vol. 33, рр. 405–416.
11. Arikan M., Sobolev K., Ertun T., Yeginobali A., Turker P. Properties of blended cements with thermally activated kaolin. Construction and Building Materials. 2009. Vol. 23, рр. 62–70.
12. Sabir B.B., Wild S. and Bai J. Metakaolin calcined clay as pozzolan for concrete: a review. Cement and Concrete Composites. 2001. Vol. 23, pp. 441–454.
13. Badogiannis E., Kakali G., Tsivilis S. Metakaolin as supplementary cementitious material Optimization of kaolin to metakaolin conversion. Journal of Thermal Analysis and Calorimetry. 2005. No. 81, рр. 457–462.
14. Deryabin P.P. Impact of prescription and technological factors on the properties of foam aerated concrete. Izvestiya Vuzov. Stroitel’stvo. 2001. No. 5, pp. 39–42. (In Russian).
15. Gusenkov S.A., Udachkin V.I., Galkin S.D., Erofeev V.S. Insulation and wall products from nonautoclaved foam concrete. Stroitel’nye Materialy [Construction Materials]. 1999. No. 4, pp. 10–11. (In Russian).
16. Kardumyan G.S., Kaprielov S.S. New organic modifier “MB” series-Embelit for the production of high-quality concrete. Stroitel’nye Materialy [Construction materials]. 2005. No. 8, pp. 12–15. (In Russian).
17. Kaprielov S.S., Shejnfel’d A.V., Kardumyan G.S. Dondukov V.G. Modified high-strength fine-grained concrete with improved strain characteristics. Beton I Zhelezobeton. 2006. No. 2, pp. 2–6. (In Russian).

For citation: 


Print   Email