Autoclave Gas Concrete with Nanostructured Aluminosilicate Modifier

Number of journal: №4-2016
Autors:

V.V. NELUBOVA
I.I. PODGORNIY
V.V. STROKOVA
Y.V. PALSHINA

DOI: https://doi.org/10.31659/0585-430X-2016-736-4-72-75
УДК: 691.327.332:539.2

 

AbstractAbout AuthorsReferences
The efficiency of application of aluminosilicate modifier based on magmatic acid rock – granite is demonstrated. Enhancement of physical, mechanical and performance characteristics of modified composites associated with optimization of rheological properties of binding mixture, acceleration of structure formation process as well as formation of rational composition with heterosize new phases under hydrothermal conditions is shown. Pore space of the developed composites is characterized by heteroporous structure with impact interpore partition explaining the reducing of final product density when their strength is constant. Results of the study allow proposing autoclave gas concrete compositions with nanostructured modifier using for cement in molding mixtures. It allows production the heat-insulating and structural-heat-insulating materials with high isolation and strength at reduced cost.
V.V. NELUBOVA, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
I.I. PODGORNIY, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
V.V. STROKOVA, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
Y.V. PALSHINA, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

Belgorod State Technological University named after V.G. Shukhov (46, Kostyukova Street, Belgorod, 308012, Russian Federation)

1. Nelyubova V.V., Cherevatova A.V., Strokova V.V., Goncharova T.Yu. Features of structure formation in colored silicate materials with nanostructured binder. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2010. No. 3, pp. 28–32. (In Russian).
2. Nelyubova V.V., Zhernovskiy I.V., Strokova V.V., Bezrodnykh M.V. Autoclave silicate materials with nanostructured modifier under high-temperature service. Stroitel’nye Materialy [Construction Materials]. 2012. No. 9, pp. 8–9. (In Russian).
3. Nelyubova V.V., Altynnik N.I., Strokova V.V., Podgorniy I.I. Rheological properties of cellular concrete mixture with nanostructured modifier. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2014. No. 2, pp. 58–61. (In Russian).
4. Nelyubova V.V., Strokova V.V., Altynnik N.I. Cellular autoclave composites with nanostructured modifier. Stroitel’nye Materialy [Construction Materials]. 2014. No. 5, pp. 44–47. (In Russian).
5. Strokova V.V., Nelyubova V.V., Altynnik N.I., Zhernovskiy I.V., Osadchiy E.G. Phase formation in the system «cement – lime – silica» under hydrothermal conditions with using of nanostructured modifier. Stroitel’nye Materialy [Construction Materials]. 2013. No. 9, pp. 30–33. (In Russian).
6. Vishnevskiy A.A., Grinfel’d G.I., Kulikova N.O. Review of Russian market of autoclave gas concrete. Stroitel’nye Materialy [Construction Materials]. 2013. No. 6, pp. 40–44. (In Russian).
7. Alfimova N.I., Cherkasov V.S. Prospective of application of wastes from keramzit production in construction material science. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2010. No. 3, pp. 21–24. (In Russian).
8. Alfimova N.I., Shapovalov N.N. Autoclave materials with industrial aluminosilicate raw materials. Fundamental’nye issledovaniya. 2013. No. 6-3, pp. 525–529. (In Russian).
9. Strokova V.V., Alfimova N.I., Cherkasov V.S., Shapovalov N.N. Pressed autoclave materials with wastes from haydite production. Stroitel’nye Materialy [Construction Materials]. 2012. No. 3, pp. 14–15. (In Russian).
10. Volodchenko A.N., Lesovik V.S. Silicate autoclave materials on the base of aluminosilicate raw materials as optimization factor of the system «Human – material – environment». Izvestiya vysshikh uchebnykh zavedenii. Stroitel’stvo. 2014. No. 3, pp. 27–33. (In Russian).
11. Volodchenko A.N. Study of products of clay and lime interaction under autoclave curing. Innovatsii v nauke. 2014. No. 30-1, pp. 89–95. (In Russian).
12. Volodchenko A.N., Lesovik V.S. Rheological characteristics of gas concrete mixture on the base of non-conventional raw materials. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2012. No. 3, pp. 45–48. (In Russian).
13. Zhernovskiy I.V., Nelyubova V.V., Strokova V.V., Osadchiy E.G. Phase formation of binders in the system «lime – granite nanostructured binder». Stroitel’nye Materialy [Construction Materials]. 2015. No. 10, pp. 49–53. (In Russian).

For citation: 


Print   Email