Assessment of Activity of a Mineral Binder on the Basis of Saponite-Containing Material

Number of journal: №9-2016
Autors:

T.A. DROZDYUK
A.M. AYZENSHTADT
M.A. FROLOVA
A.A. NOSULYA

DOI: https://doi.org/10.31659/0585-430X-2016-741-9-76-78
УДК: 691.261.1

 

AbstractAbout AuthorsReferences
A binding capacity of environment friendly high-disperse saponite-containig waste (SCW) of enrichment of kimberlite ores of the diamond-mining industry (the Lomonosov diamond mine, Arkhangelsk Oblast) as a binding substance for mineral wool heat insulating materials is analyzed. An express-method for determining the activity of a binder (A) with the help of the functional dependence of the binder activity on the value of heat effect of the hydration reaction is proposed. The rectilinear functional dependence of А=f(∆H) type obtained has a high coefficient of the approximation validity (R2=0,96) that testifies the interrelation of these values with practical applicability of the dependence obtained for assessing the binding materials quality. Results of the study of the binding capacity of high-disperse SCW samples preliminary obtained by grinding with a planetary ball mill show that the maximum value of the activity is reached when the specific surface of SCW not less than 800 sm2/g.
T.A. DROZDYUK, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.),
A.M. AYZENSHTADT, Doctor of Sciences (Chemistry) (This email address is being protected from spambots. You need JavaScript enabled to view it.),
M.A. FROLOVA, Candidate of Sciences (Chemistry),
A.A. NOSULYA, Student Northern (Arctic)

Federal University named after M.V. Lomonosov (17, Severnaya Dvina Embankment, Arkhangelsk, 163002, Russian Federation)

1. Drozdyuk T.A., Ayzenshtadt A.M., Tutygin A.S., Frolova M.A. Inorganic binding agents for mineral wool heat insulation. Stroitel’nye Materialy [Construction Materials]. 2015. No. 5, pp. 86–89. (In Russian).
2. Tutygin A.S., Aisenstadt M.A., Aisenstadt A.M., Makhova T.A. Influence of the nature of the electrolyte in the coagulation process saponite-containing slurry. Geoekologiya. 2012. No. 5, pp. 379–383. (In Russian).
3. Lesovik V.S. Povysheniye effektivnosti proizvodstva stroitel’nykh materialov s uchetom genezisa [Improving the efficiency of the production of building materials with regard to the genesis]. Moscow: Publishing House of the Association building universities. 2006. 526 p.
4. Glaser A.M. Amorphous and nanocrystalline structures: similarities, differences, mutual transitions. Rossiyskiy Khimicheskiy Zhurnal. 2002. No. 5, pp. 57–63. (In Russian).
5. Strokova V.V., Cherevatova A.V., Zhernovskiy I.V., Voitovych E.V. Features of phase formation in the composite nanostructured gypsum binder. Stroitel’nye Materialy [Construction Materials]. 2012. No. 7, pp. 9–12. (In Russian).
6. Veshnyakova L.A., A.M. Ayzenshtadt. Optimizing the particle size distribution of the mixture to obtain finegrained concrete. Promyshlennoe i grazhdanskoe stroitel’stvo. 2012. No. 10, pp. 19–22. (In Russian).
7. V.S. Lesovik, I. Sh. Rakhimbaev. Calculation and clarifying the thermodynamic properties of highly basic calcium silicate. Vestnik BGTU. 2011. No. 3, pp. 108–110. (In Russian).
8. Usherov-Marshak A.V., Kabus A.V. Calorimetric monitoring the early stages of hardening of cements in the presence of additives. Neorganicheskie materialy. 2013. Vol. 49. No. 4, pp. 449–452. (In Russian). 
9. Drozdyuk T.A., Ayzenshtadt A.M., Tutygin A.S. Waste of mining industry as a binder for the mineral insulation. Materials of international scientific E-symposiums “Technical and science: theory and practice”. Moscow. 2015, pp. 203–214. (In Russian).

For citation: 


Print   Email