Композиционные подрельсовые основания. Материалы

Журнал: №1-2-2020
Авторы:

Кондращенко В.И.,
Чжуан Ван

DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-95-111
УДК: 625.142.213

 

АннотацияОб авторахСписок литературы
По эксплуатационным свойствам, экономичности, решению экологических проблем и устойчивому развитию железнодорожного транспорта композиционные подрельсовые основания являются отличной альтернативой традиционным конструкциям из древесины, стали или железобетона. В обзоре показано, что по основным эксплуатационным характеристикам композиционные подрельсовые основания, и в частности наиболее распространенный их вид – композиционные шпалы, превосходят свойства традиционных конструкций. На основании более 100 литературных источников сведения о свойствах применяемых материалов и сравнительные характеристики материалов традиционных и композиционных подрельсовых оснований представлены в виде 14 таблиц. Обобщены исходные материалы для их получения, выявлены системные требования к материалу композиционных подрельсовых оснований, рассмотрены перспективные направления их развития в отношении исходного сырья, что является важной информативной базой по подбору сырья для расширения производства композиционных конструкций для железнодорожного транспорта.
В.И. КОНДРАЩЕНКО, д-р техн. наук (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.),
Чжуан ВАН, аспирант (Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript.)

Российский университет транспорта (127994, г. Москва, ул. Образцова, 9, стр. 9)

1. Esveld C. Modern Railway Track (2nd Editon). Delft: MRT Proctions. 2001. 740 p.
2. Koike Y., Nakamura T., Hayano K., et al. Numerical method for evaluating the lateral resistance of sleepers in ballasted tracks // Soils and Foundations. 2014. Vol. 54. Iss. 3, pp. 502–514. DOI: https://doi.org/10.1016/j.sandf.2014.04.014
3. International Union of Railways (UIC). SUWOS—Sustainable Wooden Railway Sleepers. Pairs UIC, 2013. 44 p.
4. Total length of the railway lines in use in the European Union (EU-28) from 1990 to 2017 (in kilometers). https://www.statista.com/statistics/451812/length-of-railway-lines-in-use-in-europe-eu-28/ (Date of access 17.06.2019).
5. 铁道部档案史志中心.中国铁道年鉴2015.北京:中国铁道出版社.2016.588 p. Архивный исторический центр Министерства путей сообщения. Ежегодник Китайской железной дороги 2015 [M]. Пекин: Китайское Железнодорожное Издательство, 2016. 588 c. (На китайском).
6. Historical Tie Trends. Wood Crosstie Insertions in the US. https://www.rta.org/assets/docs/Surveys/class%201%20insertions%201921%20to%202016.pdf (Date of access 02.12.2019).
7. Ferdous W., Manalo A., Aravinthan T., et al. Review of failures of railway sleepers and its consequences. Proceedings of the 1st International Conference on Infrastructure Failures and Consequences (ICFC 2014). RMIT University. 2014. Vol. 1, pp. 398-407.
8. Silva É.A., Pokropski D., You R., et al. Comparison of structural design methods for railway composites and plastic sleepers and bearers // Australian journal of structural engineering. 2017. Vol. 18, Iss. 3, pp. 160–177. DOI: https://doi.org/10.1080/13287982.2017.1382045
9. Ets Rothlisberger SA. History and development of the wooden sleeper. https://www.traverses-chemin-de-fer-bois.ch/files/4/Timber_sleeper-history_and_development.pdf (Date of access 08.12.2019).
10. Terziev N., Panov D. Plant oils as “green” substances for wood protection. Ecowood 2010, 4th International Conference on Environmentally-Compatible Forest Products. Porto. 2011. Vol. 1, pp. 139–146.
11. Silva A., Martins A.C., Feio A.O., et al. Feasibility of creosote treatment for glued-laminated pine-timber railway sleepers // Journal of Materials in Civil Engineering. 2014. Vol. 27, Iss. 3, p. 04014134. DOI: https://doi.org/10.1061/(ASCE)MT.1943–5533.0001073
12. Koh T., Hwang S. Field evaluation and durability analysis of an eco-friendly prestressed concrete sleeper // Journal of Materials in Civil Engineering. 2014. Vol. 27, Iss. 7, p. B4014009. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001109
13. Geyer R., Jambeck J.R., Law K.L. Production, use, and fate of all plastics ever made // Science advances. 2017. Vol. 3, Iss. 7, p. e1700782. DOI: https://doi.org/10.1126/sciadv.1700782
14. Jambeck J.R., Geyer R., Wilcox C., et al. Plastic waste inputs from land into the ocean // Science. 2015. Vol. 347, Iss. 6223, pp. 768–771. DOI: https://doi.org/10.1126/science.1260352
15. Шерункова О. Вечная проблема: Россия тонет в пластике. https://www.gazeta.ru/business/2019/07/01/12469297.shtml (Дата обращения: 08.12.2019).
15. Sherunkova O. The eternal problem: Russia is drowning in plastic https://www.gazeta.ru/business/2019/07/01/12469297.shtml (Date of access: 08.12.2019).
16. Manalo A., Aravinthan T., Karunasena W., et al. A review of alternative materials for replacing existing timber sleepers // Composite Structures. 2010. Vol. 92, Iss. 3, pp. 603–611. DOI: https://doi.org/10.1016/j.compstruct.2009.08.046
17. Shokrieh M.M., Rahmat M. On the reinforcement of concrete sleepers by composite materials // Composite structures. 2006. Vol. 76, Iss. 4, pp. 326–337. DOI: https://doi.org/10.1016/j.compstruct.2005.05.005
18. Kaewunruen S., You R., Ishida M. Composites for timber-replacement bearers in railway switches and crossings // Infrastructures. 2017. Vol. 2, Iss. 4, p. 13. DOI: https://doi.org/10.3390/infrastructures2040013
19. Описание и марки полимеров — АБС-пластик. http://www.polymerbranch.com/catalogp/view/8.html&viewinfo=2 (Дата обращения: 08.12.2019).
19. Description and grades of polymers – ABS plastic. http://www.polymerbranch.com/catalogp/view/8.html&viewinfo=2 (Date of access: 08.12.2019).
20. Maya M.G., George S.C., Jose T., et al. Mechanical properties of short sisal fibre reinforced phenol formaldehyde eco-friendly composites // Polymers from Renewable Resources. 2017. Vol. 8, Iss. 1, pp. 27–42. DOI: https://doi.org/10.1177/204124791700800103
21. Tuner P.S. Thermal Expansion Stresses in Reinforced Plastic // NBS. 1946. Vol. 37, p. 239.
22. James E.M. Physical properties of polymers handbook (2nd Edition). New York: Springer. 2007. 1038 p.
23. Крыжановский В.К., Бурлов В.В., Паниматчен-ко А.Д. и др. Технические свойства полимерных материалов: справочник (2-е изд.). СПб.: ЦОП Профессия. 2011. 240 c.
23. Kryzhanovskii V.K., Burlov V.V., Panimatchenko A.D., et al. Tekhnicheskie svoistva polimernykh materialov: spravochnik (2-e izd.) [Technical properties of polymeric materials: handbook (2-nd edition)]. Saint Petersburg: TsOP Professiya. 2011. 240 p.
24. 沈荣熹, 崔琪,李清海. 新型纤维增强水泥基复合材料. 北京:中国建材工业出版社.2004.382 p.
25. Ghalia M.A., Dahman Y. Lignocellulosic fibre and biomass-based composite materials. Cambridge: Woodhead Publishing. 2017. 522 p.
26. Fraczek-Szczypta A., Bogun M., Blazewicz S. Carbon fibers modified with carbon nanotubes // Journal of materials science. 2009. Vol. 44, Iss. 17, pp. 4721–4727. DOI: https://doi.org/10.1007/s10853-009-3730-2
27. Coefficient of linear thermal expansion on polymers Explained. https://passive-components.eu/coefficient-of-linear-thermal-expansion-on-polymers-explained/ (Date of access 08.12.2019).
28. Boron and silicon carbide fibres. Specialty Materials, Inc. http://specmaterials.com/boronfiberproperties.htm (Date of access 08.12.2019).
29. Alumina and Alumina Fibres – Properties and Applications. https://www.azom.com/article.aspx?ArticleID=2103 (Date of access 08.12.2019).
30. Rojstaczer S., Cohn D., Marom G. Thermal expansion of Kevlar fibres and composites // Journal of materials science letters. 1985. Vol. 4, Iss. 10, pp. 1233–1236.
31. Faruk O., Bledzki A.K., Fink H.P., et al. Biocomposites reinforced with natural fibers: 2000–2010 // Progress in polymer science. 2012. Vol. 37, Iss. 11, pp. 1552–1596. DOI: https://doi.org/10.1016/j.progpolymsci.2012.04.003
32. Taj S., Munawar M.A., Khan S. Natural fiber-reinforced polymer composites // Proceedings-Pakistan Academy of Sciences. 2007. Vol. 44, Iss. 2, p. 129. https://www.researchgate.net/profile/Munawar_Munawar5/publication/228636811_Natural_fiber-reinforced_polymer_composites/links/544e8ced0cf29473161be3d9/Natural-fiber-reinforced-polymer-composites.pdf (Date of access 08.12.2019).
33. Célino A., Fréour S., Jacquemin F., et al. The hygroscopic behavior of plant fibers: a review // Frontiers in chemistry. 2014. Vol. 1, p. 43. DOI: https://doi.org/10.3389/fchem.2013.00043
34. Bodros E., Baley C. Study of the tensile properties of stinging nettle fibres (Urtica dioica) // Materials Letters. 2008. Vol. 62, Iss. 14, pp. 2143–2145. DOI: https://doi.org/10.1016/j.matlet.2007.11.034
35. Liu D., Song J., Anderson D.P., et al. Bamboo fiber and its reinforced composites: structure and properties // Cellulose. 2012. Vol. 19, Iss. 5, pp. 1449–1480. DOI: https://doi.org/10.1007/s10570-012-9741-1
36. Mohanty A.K., Misra M., Drzal L.T. Natural Fibers, Biopolymers, and Biocomposites. Boca Raton: CRC Press. 2005. 852 p.
37. Zakikhani P., Zahari R., Sultan M.T.H., et al. Extraction and preparation of bamboo fibre-reinforced composites // Materials & Design. 2014. Vol. 63, pp. 820–828. DOI: https://doi.org/10.1016/j.matdes.2014.06.058
38. Senthilkumar K., Saba N., Chandrasekar M., et al. Evaluation of mechanical and free vibration properties of the pineapple leaf fibre reinforced polyester composites // Construction and Building Materials. 2019. Vol. 195, pp. 423–431. DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.081
39. Shah A.U.M., Sultan M.T.H., Jawaid M., et al. A review on the tensile properties of bamboo fiber reinforced polymer composites // BioResources. 2016. Vol. 11, Iss. 4, pp. 10654–10676. DOI: https://doi.org/10.15376/biores.11.4.Shah
40. Ku H., Wang H., Pattarachaiyakoop N., et al. A review on the tensile properties of natural fiber reinforced polymer composites // Composites Part B: Engineering. 2011. Vol. 42, Iss. 4, pp. 856–873. DOI: https://doi.org/10.1016/j.compositesb.2011.01.010
41. Pappu A., Patil V., Jain S., et al. Advances in industrial prospective of cellulosic macromolecules enriched banana biofibre resources: A review // International journal of biological macromolecules. 2015. Vol. 79, pp. 449–458. DOI: https://doi.org/10.1016/j.ijbiomac.2015.05.013
42. Han Z., Liu Y., Zhong M., et al. Influencing factors of domestic waste characteristics in rural areas of developing countries // Waste Management. 2018. Vol. 72, pp. 45–54. https://www.academia.edu/36668189/Domestic_waste_management_and_its_environmental_impacts_in_Addis_Ababa_City (Date of access 08.12.2019).
43. Mohammed A., Elias E. Domestic solid waste management and its environmental impacts in Addis Ababa city // Journal of Environment and Waste Management. 2017. Vol. 4, Iss. 1, pp. 194–203.
44. Andreola F., Barbieri L., Lancellotti I., et al. Recycling of industrial wastes in ceramic manufacturing: State of art and glass case studies // Ceramics International. 2016. Vol. 42, Iss. 12, pp. 13333–13338. DOI: https://doi.org/10.1016/j.ceramint.2016.05.205
45. Rabe S., Sanchez-Olivares G., Pérez-Chávez R., et al. Natural keratin and coconut fibres from industrial wastes in flame retarded thermoplastic starch biocomposites // Materials. 2019. Vol. 12, Iss. 3, p. 344. DOI: https://doi.org/10.3390/ma12030344
46. Ding Z., Yi G., Tam V.W.Y., et al. A system dynamics-based environmental performance simulation of construction waste reduction management in China // Waste management. 2016. Vol. 51, pp. 130–141. DOI: https://doi.org/10.1016/j.wasman.2016.03.001
47. Yuan H., Shen L. Trend of the research on construction and demolition waste management // Waste management. 2011. Vol. 31, Iss. 4, pp. 670–679. DOI: https://doi.org/10.1016/j.wasman.2010.10.030
48. Yeheyis M., Hewage K., Alam M.S., et al. An overview of construction and demolition waste management in Canada: a lifecycle analysis approach to sustainability // Clean Technologies and Environmental Policy. 2013. Vol. 15, Iss. 1, pp. 81–91. DOI: https://doi.org/10.1007/s10098-012-0481-6
49. Lampo R. Recycled plastic composite railroad crossties. Construction Innovation Forum US Army ERDC-CERL. Champaign, IL, USA. 2002. http://www.cif.org/noms/2002/13_-_Recycled_Plastic_Composite_Crossties.pdf (Date of access 08.12.2019).
50. AXION ECOTRAX(R), Composite Railroad Ties. https://axionsi.com/products/ecotrax-railroad/ (Date of access 08.12.2019).
51. АКСИОН РУС. Композитные шпалы. https://axionrus.ru/kompozitnayashpala/ (Дата обращения: 08.12.2019).
51. RUSSIAN AKSION. Composite cross ties. https://axionrus.ru/kompozitnayashpala/ (Date of access 08.12.2019)
52. TieTek сomposite ties. http://www.tietek.net/product.asp (Date of access 08.12.2019).
53. Railroad tie and method for making same. https://patents.google.com/patent/US20020123553/de (Date of access 08.12.2019).
54. АпАТэК – Прикладные перспективные технологии. http://www.apatech.ru/beam.html (Дата обращения: 08.12.2019).
54. ApATeK – Applied Advanced Technologies. http://www.apatech.ru/beam.html (Date of access 08.12.2019)
55. IntegriCo. IntegriTies. https://www.integrico.com/integrities (Date of access 08.12.2019).
56. Clifton P. Plastic surgery // Rail Professional. 2009. P. 26.
57. Network Rail to recycle rubbish into sleepers. https://www.theguardian.com/environment/2009/feb/16/rail-recycling-plastic (Date of access 08.12.2019).
58. SICUT. Plastic Composite Railway Mainline Sleepers. http://www.sicut.co.uk/standard-sleeper-tie/ (Date of access 08.12.2019).
59. Fraunhofer ICT. Mixed Plastic Waste (MPW) Sleeper. https://nachhaltigwirtschaften.at/en/fdz/projects/susprise/railwaste-production-of-railway-sleepers-by-mixed-plastic-waste.php (Date of access 08.12.2019).
60. SUNRUI Plastic composite sleeper. http://www.xssunrui.com/kjcp/gdjtfhclcp/332256.html (Date of access 08.12.2019).
61. 孙津生, 孙稳, 孙嫣. 一种塑胶铁路枕木配方工艺 [P]. CN103524923A.
62. 肖生苓, 陈玉霄. 铁路轨枕复合材料组分特性及对整体性能影响的分析 [J]. 森林工程, 2007, 23(1): 85–87.
63. Кондращенко В.И., Харчевников В.И., Стородуб-цева Т.Н. и др. Древесно-стекловолокнистые композиционные шпалы. М.: Спутник+. 2009. 311 c.
63. Kondrashchenko V.I., Kharchevnikov V.I., Storodubtseva T.N., etс. Drevesnosteklovoloknistye kompozitsionnye shpaly [Wood and Glass Fiber reinforced composite sleeper]. Moscow: Sputnik+. 2009. 311 p.
64. Стородубцева Т.Н., Федянина Н.В. Компози-ционный материал на основе отходов лесного комплекса для железнодорожных шпал // Современные наукоемкие технологии. 2011. № 5. С. 49–52.
64. Storodubtseva T.N., Fedyanina N.V. Composite material based on forest complex wastes for railway sleepers. Sovremennye naukoemkie tekhnologii. 2011. No. 5, pp. 49–52.
65. Патент РФ 2179923. Способ изготовления литой шпалы для железных дорог широкой колеи / Занегин Л.А., Селиванов Н.Ф., Петров Ю.Л. Заявл. 30.03.2000. Опубл. 27.01.2002.
65. Patent RF 2179923. Sposob izgotovleniya litoi shpaly dlya zheleznykh dorog shirokoi kolei [Cast method for manufacturing sleepers for broad gauge railways]. Zanegin L.A., Selivanov N.F., Petrov Yu.L. Declared 30.03.2000. Published 27.01.2002. (In Russian).
66. Патент РФ 2354548. Способ производства композиционных шпал прокатом / Занегин Л.А., Кондратюк В.А., Воскобойников И.В. и т. д. Заявл. 30.10.2007. Опубл. 10.05.2009. Бюл. № 13.
66. Patent RF 2354548. Sposob proizvodstva kompozitsionnykh shpal prokatom [A rolling method for the production of composite sleepers]. Zane-gin L.A., Kondratyuk V.A., Voskoboinikov I.V., et al. Declared 30.10.2007. Published 10.05.2009. Bulletin No. 13. (In Russian).
67. Патент РФ 2389841. Составная композиционная шпала / Занегин Л.А., Кондратюк В.А., Воскобой-ников И.В. и т. д. Заявл. 27.10.2009. Опубл. 23.04.2008. Бюл. № 14.
67. Patent RF 2389841. Sostavnaya kompozitsionnaya shpala [Composite Composite Sleepers]. Zane-gin L.A., Kondratyuk V.A., Voskoboinikov I.V. et al. Declared 27.10.2009. Published 23.04.2008. Bulletin No. 14. (In Russian).
68. Pattamaprom C., Dechojarassri D., Sirisinha C. et al. Natural rubber composites for railway sleepers: a feasibility study. Thailand: Thammasat University. 2005. 350 p.
69. Greenrail. Composite sleeper product. http://www.greenrailgroup.com/en/the-product/ (Date of access 08.12.2019).
70. Tufflex Plastic products (Pty) Ltd. Product Range, http://www.tufflex.co.za/Pages/ProductCatalogue2/SubCategoryPage/SubCategoryPage.asp?SubCategoryID=4391 (Date of access 08.12.2019).
71. Rahul S., Garish P., Gaurav K., et al. Composite Railway Sleeper // International Research Journal of Engineering and Technology (IRJET). 2018. Vol. 5, Iss. 9.
72. Khalil A.A. Mechanical Testing of Innovated Composite Polymer Material for using in Manufacture of Railway Sleepers // Journal of Polymers and the Environment. 2018. No. 26, Iss. 1, pp. 263–274. DOI: https://doi.org/10.1007/s10924-017-0940-6
73. Khalil A.A., Bakry H.M., Riad H.S. et al. Analysis on railway sleepers manufactured from polymers and iron slag // Journal of Engineering Sector of Engineering Colleges – Al-Azhar University. 2017. Vol. 12, Iss. 43, pp. 620–639. DOI: https://doi.org/10.21608/AUEJ.2017.19251
74. FRP Composite Sleepers for Application on Rail Tracks and Support Spans. http://www.presentica.com/ppt-presentation/frp-composite-sleepers-for-application-on-rail-tracks-and-support-spans (Date of access 08.12.2019).
75. Hameed A.S., Shashikala A.P. Suitability of rubber concrete for railway sleepers // Perspectives in Science. 2016. No. 8, pp. 32–35. DOI: https://doi.org/10.1016/j.pisc.2016.01.011 (Date of access 08.12.2019).
76. Duratrack® Composite Recycled Plastic Railway Sleepers. http://www.integratedrecycling.com.au/railway-sleepers/ (Date of access 08.12.2019).
77. SEKISUI. FFU® synthetic wood railway sleepers. https://www.sekisui-rail.com/en/ffu_en.html (Date of access 08.12.2019).
78. SUNRUI. Synthetic sleeper. http://www.xssunrui.com/kjcp/gdjtfhclcp/332255.html (Date of access 08.12.2019).
79. KEBOS. Fiber Reinforced Foamed Urethane Sleeper, http://www.kebos.cn/item/5.html (Date of access 08.12.2019).
80. 于雪斐, 刘雷, 于文吉. 重组竹 (木) 材料替代传统轨枕材料的探讨[J]. 木材加工机械, 2011, 22(6): 40–43.
81. 王士和. 矿用重组竹轨枕. [P]. CN202954271.
82. 吕延, 吴光荣, 季建仁, 陈璟. 玻璃纤维合成轨枕及其制造方法[P]. CN101759898A.
83. 凌烈鹏, 冯毅杰, 李家林. 异型玻璃钢轨枕的设计及应用[J]. 铁道建筑, 2012 (7): 112–114.
84. Hoger D.I. Fibre composite railway sleepers. Cand. Diss. University of Southern Queensland, Toowoomba, Queensland, Australia, 2000.
85. KLP. Hybrid Polymer Sleepers. https://www.lankhorstrail.com/en/recycled-plastic-sleepers (Date of access 08.12.2019).
86. KLP. Hybrid Polymer Sleepers. https://www.hirdrail.com/klp-polymer-sleepers.html (Date of access 08.12.2019).
87. Plastic Composite Wood Core Ties. http://www.swrvandmarine.com/viewitem.php?id=13&basename=equipment (Date of access 08.12.2019).
88. Кондращенко В.И. Оптимизация составов и технологических параметров получения изделий брускового типа методами компьютерного материаловедения. Дисс. ... д-ра техн. наук. Москва, 2005. 551 с.
88. Kondrashchenko V.I. Optimization of the compositions and technological parameters of the production of bar-type products by computational materials science methods. Doc. Diss. Moscow. 2005. 551 p. (In Russian).
89. Qiao P., Davalos J.F., Zipfel M.G. Modeling and optimal design of composite-reinforced wood railroad crosstie // Composite Structures. 1998. Vol. 41, Iss. 1, pp. 87–96. DOI: https://doi.org/10.1016/S0263-8223(98)00051-8
90. Ferdous W., Manalo A., Khennane A., et al. Geopolymer concrete-filled pultruded composite beams–concrete mix design and application // Cement and Concrete Composites. 2015. No. 58, pp. 1–13. DOI: https://doi.org/10.1016/j.cemconcomp.2014.12.012
91. Van Erp G., Rogers D. A highly sustainable fibre composite building panel. Proceedings of the international workshop on fibre composites in civil infrastructure–past, present and future. Brisbane. 2008. Vol. 1. pp. 1–2. http://icsservices.com.au/wkg/pdfs/ARTICLE%20BY%20DR%20G%20VANERP0001TO7.pdf (Date of access 08.12.2019).
92. Ferdous W., Manalo A., Van Erp G., et al. Evaluation of an innovative composite railway sleeper for a narrow-gauge track under static load. Journal of Composites for Construction. 2017. Vol. 22, Iss. 2, p. 04017050. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000833
93. Ticoalu A.N.E. Investigation on fibre composite turnout sleepers. Master of engineering dissertation. University of Southern Queensland. 2008.
94. Manalo A., Aravinthan T. Behavior of full-scale railway turnout sleepers from glue-laminated fiber composite sandwich structures // Journal of composites for construction. 2012. Vol. 16, Iss. 6, pp. 724–736. DOI: https://doi.org/10.1061/(ASCE)CC.1943-5614.0000307
95. Van Erp G. M. A railway sleeper: U.S. Patent Application 14/652,806 [P]. 2015-11-19.
96. Van Erp G., Mckay M. Recent Australian developments in fibre composite railway sleepers // Electronic Journal of Structural Engineering. 2013. Vol. 13, Iss. 1, pp. 62–66. http://www.ejse.org/Archives/Fulltext/2013sp/Recent%20Australian%20Developments%20in%20Fibre%20Composite%20Railway%20Sleepers.pdf (Date of access 08.12.2019).
97. Soehardjo K.A., Basuki A. Utilization of bagasse and coconut fibers waste as fillers of sandwich composite for bridge railway sleepers. IOP Conference Series: Materials Science and Engineering. Medan. 2017. Vol. 223, conference 1, p. 012036. DOI: https://doi.org/10.1088/1757-899X/223/1/012036
98. 胡显奇, 徐蕴贤. 玄武岩纤维在铁路轨枕中的应用研究[C]//第十二届全国纤维混凝土学术会议. 中国土木工程学会, 2009: 48-53.
99. 范立国, 周勇, 赵莹, 等.一种聚丙烯纤维混凝土轨枕[P]. CN 1743551.
100.Патент РФ 2328373. Способ сохранения торца шпалы от растрескивания / Занегин Л.А. Заявл. 14.09.2006. Опубл. 10.07.2008.
100.Patent RF 2328373. Sposob sokhraneniya tortsa shpaly ot rastreskivaniya [A method to protect end surfaces of sleepers from cracking] / Zanegin L.A. Declared 14.09.2006. Published 10.07.2008.
101.Ahn S., Kwon S., Hwang Y.T., et al. Complex structured polymer concrete sleeper for rolling noise reduction of high-speed train system. Composite Structures. 2019. Vol. 223, p. 110944. DOI: https://doi.org/10.1016/j.compstruct.2019.110944
102.Koh T., Hwang S. Field evaluation and durability analysis of an eco-friendly prestressed concrete sleeper. Journal of Materials in Civil Engineering. 2014. Vol. 27, Iss. 7, p. B4014009. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0001109
103. Shokrieh M.M., Rahmat M. On the reinforcement of concrete sleepers by composite materials. Composite structures. 2006. Vol. 76, Iss. 4, pp. 326–337. DOI: https://doi.org/10.1016/j.compstruct.2005.05.005
104.Verma D., Fortunati E., Jain S. et al. Biomass, Biopolymer-Based Materials, and Bioenergy. Cambridge: Woodhead Publishing. 2019. 558 p.
105.Huang Z., Sun Y., Musso F. Assessment on bamboo scrimber as a substitute for timber in building envelope in tropical and humid subtropical climate zones-part 2 performance in building envelope. IOP Conference Series: Materials Science and Engineering. 2017. Vol. 264, conference 1, p. 012007. DOI: https://doi.org/10.1088/1757-899X/264/1/012007

Для цитирования: Кондращенко В.И., Чжуан Ван. Композиционные подрельсовые основания. Материалы // Строительные материалы. 2020. № 1–2. С. 95–111. DOI: https://doi.org/10.31659/0585-430X-2020-778-1-2-95-111