Strength of Fine Concrete with Addition of Fine Crushed Recyclable Optical Discs

Number of journal: 6-2019
Autors:

Ezerskiy V.A.
Kuznetsova N.V.
Seleznev A.D.
Moiseenko G.A.

DOI: https://doi.org/10.31659/0585-430X-2019-771-6-18-23
УДК: 691.32:621.74

 

AbstractAbout AuthorsReferences
The possibility of utilization of optical disks after their fine crushing for partial replacement of filler in fine concrete is analyzed. The dependence of the compressive strength of concrete on three factors was studied: the amount of waste of fine crushed optical discs in fractions of the mass of the filler; the amount of plasticizer and water-cement ratio. In the experiment, the utilized optical disks were crushed to fractions of 0.315–2.5 mm. It is established that the use of crushed optical discs waste in fine concrete to partially replace construction sand in an amount from 0 to 50% of the total mass of fine filler reduces the compressive strength of concrete samples by 29%. The change in the values of other factors has approximately the same effect on the strength of the samples, but much less than the proportion of waste in the mixture: with an increase in the amount of plasticizer in the mixture, the compressive strength almost linearly increases by 7.5%, with an increase in the water-cement ratio – decreases by 6.3%. The decrease in bending strength and density with an increase in the proportion of waste of crushed discs in the filler is also established. The introduction of crushed optical discs up to 25% by weight of the filler in the mixture composition makes it possible to obtain, at certain ratios of the amount of plasticizer and water-cement ratio, samples with a compressive strength close to the strength of the samples without waste. At that a reduction in the consumption of the binder up to 20% is achieved.
V.A. EZERSKIY1, Doctor of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
N.V. KUZNETSOVA2, Candidate of Sciences (Engineering) (This email address is being protected from spambots. You need JavaScript enabled to view it.)
A.D. SELEZNEV2, Master Student (This email address is being protected from spambots. You need JavaScript enabled to view it.)
G.A. MOISEENKO3, Engineer (This email address is being protected from spambots. You need JavaScript enabled to view it.)

1 Bialystok University of Technology (45A, Wiejska Street, Bialystok, 15-351, Poland)
2 Tambov State Technical University (106, Sovetskaya Street, Tambov, 392000, Russian Federation)
3 Research Institute of Building Physics of RAACS (21, Lokomotivniy Driveway, Moscow, 127238, Russian Federation)

1. Сурков А.А., Глушанкова И.С. Разработка системы управления отходами потребления поликарбоната // Транспорт. Транспортные сооружения. Экология. 2014. № 3. С. 119–131. https://elibrary.ru/download/elibrary_22961626_61217934.pdf
1. Surkov A.A., Glushankova I.S. Development of the management system of polycarbonate consumption waste. Transport. Transportnye sooruzheniya. Ekologiya. 2014. No. 3, pp. 119–131. https://elibrary.ru/download/elibrary_22961626_61217934.pdf (In Russian).
2. Ла Мантия Ф. Вторичная переработка пластмасс / Пер. с англ.; под ред. Г.Е. Заикова. СПб.: Профессия, 2007. 400 с.
2. La Mantiya F. Vtorichnaya pererabotka plastmass [Handbook of plastics recycling] Translation from English. Edited by G.E. Zaikova. Saint Petersburg: Professiya, 2007. 400 p.
3. Вайсман Я.И., Глушанкова И.С., Сурков А.А. Анализ методов и технических решений по утилизации отходов потребления поликарбоната // Экология и промышленность России. 2013. № 5. С. 36–41. https://elibrary.ru/download/elibrary_18962285_88793618.pdf
3. Vaisman Ya.I., Glushankova I.S., Surkov A.A. Analysis of methods and technical solutions for the disposal of polycarbonate consumption waste. Ekologiya i promyshlennost’ Rossii. 2013. No. 5, pp. 36–41. (In Russian).
4. Alavi Nikje M.M., Askarzadeh M. Chemical recycling of polycarbonate wastes into bisphenol A by using green solvent composition. Polimery. 2013. Vol. 58, pp. 292–294. DOI: https://dx.doi.org/10.14314/polimery. 2013. 292
5. Федосов С.В. Вторичные материальные ресурсы для строительной индустрии. Иваново: ИВГПУ, 2017. 188 с.
5. Fedosov S.V. Vtorichnye material’nye resursy dlya stroitel’noi industrii [Secondary material resources for the construction industry]. Ivanovo: IVGPU. 2017. 188 p.
6. Щепочкина Ю.А., Быков Б.И. Модификация мелкозернистого бетона добавками измельченной пластмассы // Строительство и реконструкция. 2017. № 4. С. 129–132.
6. Shchepochkina Yu.A., Bykov B.I. Modification of fine-grained concrete with crushed plastic additives. Stroitel’stvo i rekonstruktsiya. 2017. No. 4. pp. 129–132.
7. Thomas B.S., Gupta R.C. A comprehensive review on the applications of waste tire rubber in cement concrete. Renewable and Sustainable Energy Reviews. 2016. Vol. 54, pp. 1323–1333. DOI: https://doi.org/10.1016/j.rser.2015.10.092
8. Richardson A., Coventry K, Edmondson V., Dias E. Crumb rubber used in concrete to provide freeze–thaw protection (optimal particle size). Journal of Cleaner Production. 2016. Vol. 112. Part 1, pp. 599–606. DOI: https://doi.org/10.1016/j.jclepro.2015.08.028
9. Sambhaji P.P. Use of waste plastic in concrete mixture as aggregate replacement. International Journal of Advanced Engineering Research andScience. 2016. Iss. 12. Vol. 3, pp. 115–118. DOI: https://dx.doi.org/10.22161/ijaers/3.12.23
10. Ru Wang, Tengfei Zhang, Peiming Wang. Waste printed circuit boards nonmetallic powder as replacement for sand in cement mortar. Materiali Budowlane. 2016. Vol. 1, pp. 59–62. DOI: https://doi.org/10.15199/33.2016.01.18
11. Langier B., Werner K., Baranowski W. Modyfikacje betonu dodatkiem rozdrobnionego polipropylenu [Modification of concrete with addition of grinded polypropylene]. Przetwórstwo tworzyw. 2014. Vol. 4, pp. 299–304. http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-a55a5f25-2445-44f0-a4bc-1ced63dd1232/c/Langier.pdf (in Polish).
12. Shen W., Shan L., Zhang T., Ma H., Cai Z., Shi H. Investigation on polymer–rubber aggregate modified porous concrete. Construction and Building Materials. 2013. Vol. 38, pp. 667–674. DOI: https://doi.org/10.1016/j.conbuildmat.2012.09.006
13. Ismail1 Z. Z., Jaeel A.J. Environmental friendly concrete using waste compact discs as fine aggregate replacement. Fourth International Conference on Sustainable Construction Materials and Technologies. Las Vegas. August 7–11, 2016. http://www.claisse.info/2016%20papers/S118.pdf
14. Tang W.C., Lo Y., Cui H.Z. Size effect of waste compact disc shred on properties of concrete. Advanced Materials Research. 2012. Vol. 346, pp. 40–46. DOI: https://doi.org/10.4028/www.scientific.net/AMR.346.40
15. Rane H. Patel P., Adate P., Patil N., Jadhav S. Kashikar V. Environment Friendly Concrete by Replacement of Coarse Aggregates by waste CD’s // International Journal of Engineering Research & Technology (IJERT). 2018. Iss. 4. Vol. 7, pp. 397–399. https://www.ijert.org/research/environment-friendly-concrete-by-replacement-of-coarse-aggregates-by-waste-cds-IJERTV7IS040366.pdf
16. Ezerskiy V., Kuznetsova N.V., Seleznev A.D. Justification of the water-cement ratio decision for cement mixtures using CBPB wastes. Materials Science Forum. 2019. Vol. 945, pp. 1009–1015. DOI: 10.4028/www.scientific.net/MSF.945.1009
17. Ezerskiy V., Kuznetsova N.V., Seleznev A.D. Evaluation of the use of the CBPB production waste products for cement composites. Construction and Building Materials. Vol. 190, pp. 1117–1123. DOI: https://doi.org/10.1016/j.conbuildmat.2018.09.148
18. Ron Zevenhoven, Loay Saeed. Automotive shredder residue (ASR) and compact disc (CD) waste: options for recovery of materials and energy. Espoo: Helsinki University of Technology, Energy Engineering and Environmental Protection, 2003. 70 p.
19. Biehn A.W. Compact discard: finding environmentally responsible ways to manage discarded household CDs and DVDs. University of Pennsylvania, 2008. 61 p.
20. Ицкович С.М., Чумаков Л.Д., Баженов Ю.М. Технология заполнителей бетона. М.: Высшая школа, 1991. 272 с.
20. Itskovich S.M., Chumakov L.D., Bazhenov Yu.M. Tekhnologiya zapolnitelei betona [Concrete filler technology]. Moscow: Vysshaya shkola. 1991. 272 p.
21. Красовский Г.И., Филаретов Г.Ф. Планирование эксперимента. Мн.: БГУ им. В.И. Ленина, 1982. 302 с.
21. Krasovskii G.I., Filaretov G.F. Planirovanie eksperimenta [Design of experiment]. Minsk: BGU named after V.I. Lenin. 1982. 302 p.
22. Бродский В.З., Бродский Л.И., Голикова Т.И., Никитина Е.П., Панченко Л.А. Таблицы планов эксперимента для факторных и полиномиальных моделей: Справочное издание. М: Металлургия, 1982. 753 с.
22. Brodskii V.Z., Brodskii L.I., Golikova T.I., Nikitina E.P., Panchenko L.A. Tablitsy planov eksperimenta dlya faktornykh i polinomial’nykh modelei (spravochnoe izdanie) [Tables with the designs of experiments for factor and polynomial models (reference book)]. Moscow: Metallurgiya. 1982. 753 p.

For citation: Ezerskiy V.A., Kuznetsova N.V., Seleznev A.D., Moiseenko G.A. Strength of fine concrete with addition of fine crushed recyclable optical discs. Stroitel’nye Materialy [Construction Materials]. 2019. No. 6, pp. 18–23. (In Russian). DOI: https://doi.org/10.31659/0585-430X-2019-771-6-18-23